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Chapter 1

Algebraic Topology

1 History

For many people, Poincaré’s works [59] are the real foundation of the

algebraic topology, when he defined for the first time in 1985 what

is meant by homologous chains in a manifold. His definition was
rather imprecise, but the notion he used covered exactly the current

acceptance: two closed chains are homologous if they differ by an

edge.

By 1940, the homological algebra theory was well defined and
contributed greatly to the emergence of many other concepts like

categories and functors. Various generalisations have been imag-

ined later, like cohomology of groups with many surprising geo-
metrical connections, bounded cohomology and equivariant coho-

mology. This shows, how homological notions have become largely
widespread in almost all mathematics areas, and sometimes even

in theoretical physics. The main principle of algebraic topology is

to associate, in a functorial way, to any topological object an alge-
braic object which is invariant under certain kinds of transforma-

tions like homeomorphisms, homotopisms, holomorphisms and iso-

morphisms.

A constructive example is how to apply to a torus, two scissors
to make it homeomorphic to a paper sheet. Topologically speaking,
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scissors here symbolise loops. Two cuts are said to be equivalent,
when they have the same effect on the ambient space. In other words

one can continuously switch from one to the other. The first cut goes
around the central hole; and we get a crown. The second one is a

radial cut on this crown and gives us a rectangle.

2 Functors and categories

A category is a collection of objects connected by a kind of ar-
rows, called morphisms such that

1. (f ◦g)◦h = f ◦ (g ◦h), for any morphisms f ,g,h, whenever

the composition is possible;

2. For any object X, there exists an unique morphism, de-
noted idX ∈ hom(X,X) such that idX ◦ f = f ◦ idX = f ,
for any other morphism f , whenever the composition is
possible.

Definition 1.1

As example of categories, one may consider sets connected by maps,

topological spaces connected by continuous maps, groups connected
by morphisms of groups, or finally vector spaces connected by linear

maps.

A functor T between two given categories C and C′ is any corre-
spondence

T : C −→ C′ ,

that associates to any object X in C, an object T (X) in C′ , and

associates to any morphism f : X −→ Y in C, a morphism

T (f ): T (X) −→ T (Y ) in C′ , such that

T (idX ) = idT (X),

Definition 1.2
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for any X in C.

Vocabulary. Let T : C −→ C′ be a functor.

• T is said to be covariant when T (f ◦ g) = T (f ) ◦ T (g), for any
f ,g ;

• T is said to be contravariant when T (f ◦g) = T (g)◦T (f ), for any
f ,g ;

Examples.

1. Let C = Gpe, be the category of groups endowed with mor-

phisms of groups, then T (g) = g−1 is a contravariant functor.

2. Let C = Gpe, be the category of groups endowed with mor-

phisms of groups, then T (g) = h−1.g.h is a covariant functor,
where h is a fixed morphism.

3 Homology

A chain complex is any N-indexed family (Cn)n∈N of modules

endowed with a family of morphisms of modules

dn: Cn −→ Cn−1,

such that

dn ◦ dn+1 = 0,

with the convention that C−1 = 0.

Definition 1.3

Following the notation here above, Zn: = Imdn+1 ⊂ Bn: = kerdn.
Elements of Zn are called n-cycles, while those of Bn are called n-
bords. From Zn+1: = Imdn+1 ⊂ Bn: = kerdn, we deduce that any cycle
is a bord. The inverse is naturally not always true.

By setting C: =
⊕
n∈N

Cn, we get a graduation: any element c ∈ Cn

is called of degree n and we write |c| = n. This yields to the map
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d: C −→ C where d|Cn
= dn. In particular d2 = 0, which means that d

is a derivation, called a differential.

Let (C,d): =
⊕
n∈N

Cn a chain complex.

• Hn(C,d): = kerdn/Imdn+1 is called the

n-th group of homology of (C,d);

• βn(C): = rankHn(C,d) is called the Betti number of (C,d);

• H∗(C,d): =
⊕
n∈N

Hn(C,d) is the homology group of (C,d);

• dimH∗(C,d): =
+∞∑
n=0

βn(C) is the homological dimension of

(C,d);

• χc(C): =
∑
n

(−1)nβn(C) is the Euler-Poincaré homological

invariant of (C,d).

Definition 1.4

It is worth pointing out that the homology measures the obstruction

of a bond to be a cycle. In fact, two bords x and y are homologous,

i.e., [x] = [y], means that dx = dy = 0 and that x = y+dc.

Let n be a fixed integer. A standard n-simplex (or standard

simplex of dimension n) in Rn, denoted generally Δn, is the

hull convex inRn of the points e0, e1, · · · , en, where e0 = (0, · · · ,0),
e1 = (1,0, · · · ,0), . . . , and en = (0, · · · ,0,1).

Definition 1.5

• A 0-standard simplex is a point;

• A 1-standard simplex is a segment;

• A 2-standard simplex is a full triangle;
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Figure 1.1: A tetrahedron is 3-simplex

• A 3-standard simplex is a full tetrahedron.

Let n be a fixed integer, and Δ a given n-standard simplex.

Let 0 ≤ k ≤ n. Any hull convex of a sub-family (ei ) of k elements
among e0, e1, · · · , en is a k-standard simplex of Δ, called a k-face
of Δ.

Definition 1.6

For example, the 0-faces of a tetrahedron are its vertices, its 1-faces
are its edges, while its 2-faces are its full triangles. The table here

above summarises the number of faces of some examples of n-simplices

simplex 0-faces 1-faces 2-faces 3-faces 4-faces 5-faces

Point 1 - - - - -

Segment 2 1 - - - -

Triangle 3 3 1 - - -

Tetrahedron 4 6 4 1 - -

Pentachord 5 10 10 5 1 -

5-simplex 6 15 20 15 6 1

6-simplex 7 21 35 35 21 7

We get this Euler-Poincaré formula:∑
n≥0

(−1)nrn(C) = 1,

where rn denotes the number of the n-faces in C.
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We call a simplicial complex any set of simplices K, that satisfies

the following conditions:

1. Every face of a simplex from K is also in K;

2. Any non empty intersection of two simplices σ1,σ2 ∈ K is
a face of both σ1 and σ2.

Definition 1.7

Figure 1.2: Simplicial complex or not?

Let K be a simplicial complex, and n a fixed integer.

We call a n-chain in K any formal sum
∑
niσi , where σi are n-

simplices in K, with coefficients ni ∈Z.

The subset of all this n-chains will be denoted Cn(K), with the

convention that C−1(K) = ∅.

Definition 1.8

Let K be a simplicial complex.

The boundary operator on K, is the Z-linear map defined by:

∂n: Cn(K) −→ Cn−1(K)

σ: = [e0, . . . , en] �−→ ∂nσ

Definition 1.9
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where, ∂nσ: =
n∑
i=0

(−1)i [e0, . . . , êi , . . . , en] and that êi means omit-

ted.

One can check that

∂n−1 ◦∂n = 0.

Theorem 1.1

In particular we have

Im∂n ⊂ ker∂n−1.

This yields the chain complex

0
i
↪→ Cn(K)

∂n
−→ Cn−1(K)

∂n−1
−→ ...

∂1
−→ C0(K)

∂0
−→ 0,

which is an algebraic structure that consists of a sequence of abelian
groups (or modules) and a sequence of homomorphisms between

consecutive groups such that the image of each homomorphism is in-

cluded in the kernel of the next. Elements of Im∂k are called bound-
aries, those of ker∂k−1 are called cycles. Thus any boundary is a cycle,

the inverse is not always true.

The k-th simplicial homology group of K, is defined to be the

quotient group

Hk(K) = ker∂k−1�Im∂k.

Its rank, denoted βp(K), is called the k-th Betti number of K.

Definition 1.10

Hk(K) represents the obstruction of a cycle to be a boundary, and

βp(K) represents the number of the homologous k-dimensional holes
in a shape. Since the interior of a circle is a disc, which is a variety

of dimension 1, one may consider a circle to have a one-dimensional
hole. In particular β0 is the number of the path-connected compo-

nents of a shape, since two points are homotopic if and only if they

live in the same path-connected component.

7



Figure 1.3: Betti numbers of some shapes.

Let X be a topological space, and n a fixed integer.

Any continuous map σ: Δn −→ X is called a n-singular simplex
of X.

Definition 1.11

While identifying σ to its geometrical image in X, it is clear that:

• 0-singular simplices are points of X;

• 1-singular simplices are curves in X;

• 2-singular simplices are 3D-surfaces in X;

• 0-singular simplices are 3D-volumes in X.

Let X be a topological space, and n a fixed integer.
n-singular chains are all finite sums,

∑
niσi , where ni are inte-

gers, while σi are n-singular simplices.

Definition 1.12
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The Z-module of such chains, will be denoted Cn(X).

Let X be a topological space, and n a fixed integer.
The bord operator ∂: Cn(X) −→ Cn−1(X) is defined by

∂σ: =

n∑
i=0

(−1)iσ|Δi
n−1

,

where Δi
n−1: = [e0, . . . , êi , . . . , en] and that êi means omitted.

Definition 1.13

Following the notations here above, we have

∂2 = 0

Theorem 1.2

In particular we have

Im∂n ⊂ ker∂n−1.

Hence, we obtain a chain complex

0
i
↪→ Cn(X)

∂n
−→ Cn−1(X)

∂n−1
−→ ...

∂1
−→ C0(X)

∂0
−→ 0,

whose homology is called the singular homology of X.

Let X be a topological space, and C(X) its associated singular
chain complex as described here above. Then, we put

H∗(X): =H∗(C(X),∂), the singular homology of X.

Definition 1.14
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Let X and Y be two given topological spaces, and f : X −→ Y a

continuous map. For any singular X-simplex σ: Δn −→ X, one
can associate a singular Y -simplex: f ◦ σ: Δn −→ Y . In partic-

ular, if σ1 and σ2 are two homologous cycles in X, then their

images are still homologous in Y .
This enables us to define on the category Top, of topological

spaces, endowed with continuous maps, the following invari-
ant functor:

H∗: X �→H∗(X), H∗: f �→H∗(f )

where

H∗(f ): H∗(X) −→ H∗(Y )
[σ] �−→ [f ◦σ]

Remark 1.1

4 Cohomology

A cochain complex is any graded family (Cn)n∈N ofZ-modules

equipped with Z-morphisms dn: Cn −→ Cn+1 such that dn+1 ◦
dn = 0.

Definition 1.15

By analogy to the above, we set Bn: = Imdn ⊂ Zn+1 = kerdn+1, and
define the cohomology of (C,d) to be

Hn(C,d): = Zn+1/Bn.

• Element de Zn are called n-cocycles;

• elements of Bn are called n-cobords.

For a given topological space, X, we dualize its singular homology as

follows:
Cn(X): = Cn(X)#

and put
d: = ∂#,
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we get a cochain complex C∗(X),d), whose cohomolgy is called the
singular cohomology of X.

Let X be a fixed topological space. The cap product is the bilin-

ear application defined as follows:

� : Cp(X;K)×Cq(X;K) −→ Cp−q(X;K)

(σ,δ) �−→ σ � δ: = δ(σ |[e0 ,...,eq ])σ |[eq,...,ep ]

,

that can be extended naturally to homology and cohomology as
follows:

� :Hp(X;K)×Hq(X;K) −→Hp−q(X;K).

Definition 1.16

If X is a closed and orientable manifold of dimension n, it is well

known that
dimHn(X) = 1.

and that

Hk(X) = 0,for any k > n.

The generator [μ] of Hn(X;Q), called the class fundamental of X veri-

fies the following:

[μ]� [σ] ∈Hn−k(X), for any [σ] ∈Hk(X).

We get the following linear application

D: Hk(X) −→ Hn−k(X)

[σ] �−→ D[σ]: = [X]� [σ]
.

Poincaré duality: If X is a closed and orientable manifold of

dimension n, then the application

D:Hk(X;Q) −→Hn−k(X;Q) is an isomorphism.

Theorem 1.3
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In other words,
Hk(X) �Hn−k(X).

For further details on both homology and cohomology we suggest
these standard references: [29] and [49].

5 Homotopy

Set I : = [0,1], and let X and Y be two given topological spaces.

We call a homotopy from X to Y , any continuous map:

H : X × I −→ Y.

Then two continuous maps f ,g : X → Y are said to be homo-

topic, when there is a homotopy H : X × I → Y , such that

H(−,0) = f , H(−,1) = g,

then we write

f ∼ g,

which define an equivalence relation on continuous maps from

X to Y .

Definition 1.17

Two given topological spaces X and Y , are said to be homo-

topic, or have the same homotopy type if and only if there exist

two continuous maps f : X→ Y and g : Y → X such that

f ◦ g ∼ idY , g ◦ f ∼ idX.

This leads to an equivalence relation on the category Top of

topological spaces endowed with continuous maps.

Definition 1.18
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An algebraic object obj(X) associated to a topological space X,

is defined to be a homotopical invariant when

obj(X) � obj(X),

for any X ∼ Y .

Definition 1.19

The following algebraic objects are homotopically invariant

1. The homology: X ∼ Y =⇒H∗(X) �H∗(Y );

2. Betti numbers: X ∼ Y =⇒ βk (X) = βk (Y );

3. Homological and cohomological dimensions: X ∼ Y =⇒

dimH∗(X) = dimH∗(Y ) and dimH∗(X) = dimH∗(Y );

4. Euler-Poincaré invariant: X ∼ Y =⇒ χc(X) = χc(Y ).

Theorem 1.4

Let X be a path-connected topological space, and n a fixed in-
teger.

The n-homotopy group of X is defined to be

πn(X): = map(Sn,X)/ ∼,

where Sn denoted the unit sphere of Rn+1, and map(Sn,X)/ ∼
the quotient set of continuous maps γ : Sn −→ X, up to homo-

topy.

Definition 1.20

With respect to the denotations above, it is worth pointing out
the following:

• The homotopy groups πn(X) are all abelian, for n ≥ 2;

Remark 1.2
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• π0(X) is nothing other than the set of the path compo-
nents of X;

• π1(X) called the fundamental group ofX, describes, when

loops inX are homotopic. card(π1(X)) interprets the num-

bers of "holes" in X.
In particular, if X is simply connected, then πi(X) = {0}.

Let X and Y be two topological spaces, then any continuous

map f : X −→ Y can be extended naturally to the homotopy

groups, by setting:

πn(f ): πn(X) −→ πn(Y )
[γ] �−→ [f ◦γ]

f is said to be a weak homotopy equivalence , when all πn(f ) are
isomorphisms.

Hence X and Y are said to have the same weak homotopy type.

Definition 1.21

Let X and Y be two given topological spaces, A a fixed subset
of X and f : A −→ Y a continuous map.

We call an attachment of X with respect to f , the quotient set

X ∪f Y obtained while identifying any element x ∈ A with its
image f (x) ∈ Y .
More precisely,

X ∪f Y : = (X
∐

Y )/x ∼ f (x),

where X
∐
Y denotes the disjoint geometrical sum of X and Y .

Definition 1.22

Vocabulary: Let n be a fixed integer.

• We call n-cell, generally denoted en, any topological space that
is homeomorphic to the open disk D(0,1) of Rn;

• We call n-skeleton, generally denoted X(n), any topological space

that can be obtained by the attachment of X(n−1) to a finite
number of n-cells;

14



• By convention, 0-skeletons, X(0), are any discrete collections of
points.

We call a CW-complex, any topological space of the form X =⋃
X(n) obtained by successive attachment of cells, and that ver-

ifies the following:

• Closure-finite: The boundary of each cell is equal to a

disjoint union of a finite number of cells of smaller di-
mensions;

• Weak topology: If X is endowed with the weak topology,

then a subset A of X is open, if and only if A∩Xn is open

for any n ∈N.

Definition 1.23

The category of CW-complexes turns out to be a good category to

work in homotopy, as the following results illustrate:

A continuous map f : X −→ Y between two CW-complexes is
called a cellular map, if it injects any n-skeleton of X into a n-
skeleton of Y .
More precisely, if f (X(n)) ⊂ Y (n), for any n ∈N.

Definition 1.24

Cellular Approximation Theorem: Any continuous map be-

tween two CW-complexes is homotopic to a cellular map.

Theorem 1.5

Whitehead Theorem: Anyweak homotopy equivalence between

two CW-complexes is a homotopy equivalence.

Theorem 1.6
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We call a cellular model of a topological space X, any CW-
complex that has the same weak homotopy type of X.

Definition 1.25

Cellular Model Theorem: Any topological space has a cellular

model, unique up to homotopy.

Theorem 1.7

For further details on homotopy, we suggest this standard reference:

[69].
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Chapter 2

Rational Homotopy

Theory

1 Introduction

An element of a group is said to be without torsion when its order

is infinite. The group itself is said to be without torsion, or free of
torsion, when its unity is the unique element with torsion. If we

tensor a group G, then we obtain a Q-vector space G ⊗G5, which is
an abelian group without torsion. Basically, the aim of the rational

homotopy theory, founded in the 1960s by D. Quillen [52] and D.

Sullivan [61], is to study the rational homotopy type of a topological
space by ignoring the torsion of its homotopy groups.

A topological space is said to be rational, when all its homotopy
groups are Q-vector spaces.

Definition 2.1
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If X is a simply connected CW-complex, then there exists a ra-

tional simply connected CW-complex, XQ, such that

πn(X)⊗Q � πn(XQ) as Q-vector spaces.

XQ is called the rationalization of X, and its homotopy type is

called the homotopy type of X.

Theorem 2.1

In fact, the birth of rational homotopy went back a little further to
1950, when H. Hopf conjectured the following:

The homotopy type of any topological space can be modelled

by a Q-graded Lie algebra.

Conjecture 1

P. Serre was the first to study the non-torsion of the homotopy

and homology groups. In 1953, he resolved the Hopf conjecture in

this particular case:

The rational weak homotopy type of any finite product of spheres

of odd dimensions can be modelled by a semi-simple, compact

and connected Lie group.

Theorem 2.2

In 1967, D. Quillen resolved completely the Hopf conjecture in a

rational context. He stated that:

The rational homotopy type of any simply connected and pointed

topological space can be modelled by a Lie group.

Theorem 2.3
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The rational weak homotopy equivalence of any finite prod-

uct of spheres of odd dimensions can be modelled by a semi-

simple, compact and connected Lie group.

Theorem 2.4

Quillen’s work represented a crucial step toward the develop-

ment of the rational homotopy theory, by justifying theoretically the

reliability of the algebraic model as an efficient tool to determine the
rational homotopy type of a topological space. However, his work

suffered from a major flaw: the calculations were generally difficult
or even impossible.

In the early 1970s, D. Sullivan tackled this problem of calcula-

tions, and proposed amodel dual to that of Quillen. Sullivan’s model
is a co-chain of commutative algebras, based on piecewise linear ra-

tional forms. When publishing his first results, Sullivan pointed

to the possibility of applying his models to resolve some geometric
problems, such as the study of non-abelian periods in a differential

manifold.
He claims that:

Any reasonable geometric construction on a topological

space can be reflected by another finite, algebraic, using

minimal models.

2 Hilali Conjecture

We were interested especially in some open problems related to el-

liptic spaces: the topological spaces X, whose rational homotopy

π∗(X)⊗Q, and rational homology H∗(X;Q) are both of finite dimen-
sion. Around 2007, our research focused on the following open prob-

lem:

Hilali conjecture (Topological version), [32]: For any simply

Conjecture 2
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connected elliptic space X, we have:

dimH∗(X;Q) ≥ dim(π∗(X)⊗Q) .

One of the powerful tools we used from rational homotopy the-
ory, was the Sullivan minimal model, which relates by a homotopy

equivalence the category of simply connected topological spaces to
that of commutative differential graded algebras. This allows topol-

ogists to transpose many of their topological problems in a algebraic

version, as follows:

Sullivan [61]: For any simply connected topological space X of

finite type, i.e.,
dimHk(X;Q) <∞ for all k > 0, there exists a commutative dif-

ferential graded algebra (ΛV ,d), called the minimal Sullivan
model of X, which algebraically models the rational homotopy

of X, in the sense that

πn(X)⊗Q � V as vector spaces,

and that

H∗(X;Q) �H∗(ΛV ,d) as algebras.

Theorem 2.5

That means that any simply-connected topological space X, can be

replaced by a rational CW-complex XQ, without exchanging either
the rational homotopy type, or the rational cohomology. In particu-

lar, we get:
dimH∗(X;Q) = dimH∗(ΛV ,d);

dimπn(X) = dimV ,

and the

Hilali conjecture (Algebraic version), [32]: If (ΛV ,d) is a sim-

ply connected and elliptic model of Sullivan, then

dimV � dimH∗(ΛV ,d).

Conjecture 3
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Before our works, the conjecture holds uniquely for pure models

(dimV even = dimV even), [32]:

If (ΛV ,d) is a simply connected and elliptic pure model of Sul-
livan , then

dimV � dimH∗(ΛV ,d).

Theorem 2.6

From 2008, we proved the following:

Hilali & M. (2008), [36]: The Hilali conjecture holds for H-

spaces.

Theorem 2.1

Let us recall that H-spaces are topological spaces whose Sullivan
models are of the form (ΛV ,d). Topological groups are particular

examples of H-spaces.

Hilali &M. (2008), [36]: The Hilali conjecture holds for simply

connected and elliptic topological spaces X, such that

fd(X) ≤ 10,

where fd(X): = max{k ∈N, dimHk(X;Q) � 0.

Theorem 2.2

Hilali &M. (2008), [36]: The Hilali conjecture holds for simply

connected and hyper-elliptic minimal Sullivan models, under
some restrictive conditions.

Theorem 2.3

Let us recall that aminimal Sullivan model (ΛV ,d) is called hyper-
elliptic whenever it satisfies the following:

dV even = 0 and dV odd ⊂ΛV even ⊗ΛV odd.

Pure models are particular examples of hyper-elliptic under our re-

strictive conditions.
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Hilali & M. (2008), [36]: The Hilali conjecture holds for sym-

plectic manifolds, for cosymplectic manifolds, and for nilman-

ifolds.

Theorem 2.4

We especially show that for such manifolds, the inequality in the

Hilali conjecture is strict.

Hilali &M. (2008), [37]: The Hilali conjecture holds for simply

connected and elliptic formal topological spaces.

Theorem 2.5

Formal spaces are topological spaces whoseminimal Sullivan mod-
els (ΛV ,d) verify the following:

V =U ⊕W, with dV = 0, and dW is a regular sequence in ΛU.

Examples of formal spaces include spheres, H-spaces, symmetric spaces,

and compact Kähler manifolds.

Hilali & M. (2008), [37]: The Hilali conjecture holds for sim-

ply connected and elliptic minimal Sullivan models (ΛV ,d)
whose differential is homogeneous of length at least 3, i.e. dV ⊂
Λ
≥3V .

Theorem 2.6

Around 2014, we investigated the case of coformal spaces, those
for whom the differential of the Sullivan model is purely quadratic,

i.e., dV ⊂Λ
2V . We especially prove the following:

Elkrafi, Hilali & M. (2015), [13]: The Hilali conjecture holds

for any coformal space X whose rational homotopy Lie algebra

L is of nilpotency 1 or 2.

Theorem 2.7

22



We also proposed some research directions to resolve completely
the coformal case by induction on the nilpotency degree of the asso-

ciated homotopy Lie algebra. In fact, resolving completely the cofor-
mal case would be a decisive step towards the definitive resolution of

the Hilali conjecture, since the case when the differential is homoge-

neous of length at least 3 was already resolved. The Hilali conjecture
now belongs to the rational homotopy theory folkloric open prob-

lems, and it gave rise to a lot of research interests and is now stated

in many interesting cases, such as:

• Hyper elliptic Sullivan models, see [4];

• Two stages Sullivan models, i.e. when V = U ⊕W with dU = 0

and dW ⊂Λ
≥2U , see [1].

We also investigate the Hilali conjecture for configuration spaces of

manifolds. Let us recall that

If M is given a manifold and k a fixed non null integer, then

F(M,k) = {(x1,x2, ...,xk ) ∈M
k , xi � xj for i � j}

denotes the space of all ordered configurations of k distinct

points in M .

Definition 2.2

Our main result states that

Hilali, M. and Yamoul (2015), [39]: IfM is a closed and simply

connected manifold, then F(M,k) verifies the Hilali conjecture

provided that F(M,k) is elliptic.

Theorem 2.8

We also proved the following

Hilali, M. and Yamoul (2015), [39]: If M is rationally elliptic,

and X =M − {pt} has a non-trivial rational homotopy group in
dimension > 1, then F(X,2) and F(M,k) for k > 2, are rationally

Theorem 2.9
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hyperbolic.

Hilali, M. and Yamoul (2015), [39]: IfM is a simply connected

manifold of dimension at least 3, and has at least two linearly
independent elements in its rational cohomology, then F(M,3)
and in general F(M,k),k ≥ 3 is rationally hyperbolic.

Theorem 2.10

where a topological space is said to be hyperbolic, whenever its ho-
mology is of infinite dimension

3 Halperin Conjecture

Around 2016 we were especially interested in:

Halperin conjecture [30]: For any elliptic space X, we have:

dimH∗(X;Q) ≥ 2rk0(X),

where rk0(X), called the toral rank, is defined to be the maxi-

mum, or the infinity, of integers n such that the toral Tn acts
almost freely on X.

Conjecture 4

We firstly make the connection possible between this conjecture
and that of Hilali, thanks to the following results:

Let χc andχπ be the cohomological and homotopic Euler-Poincaré
characteristics of X, respectively defined by:

χc: =
∑
k≥0

(−1)k dimHk(X;Q);

χπ: =
∑
k≥0

(−1)k dimπn(X)⊗Q.
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Then, following the last theorem, we get

χc = dimHeven(X;Q)−dimHodd(X;Q);

χπ = dimV even −dimV odd.

Halperin, [31]: If X is a simply connected and elliptic topolog-

ical space, then
χc ≥ 0 and χπ ≤ 0.

Moreover,
χc > 0 ⇐⇒ χπ = 0.

Theorem 2.7

In other words,

dimHeven(X;Q) ≥ dimHodd(X;Q),

and

dimV even ≤ dimV odd.

Moreover,

dimHeven(X;Q) > dimHodd(X;Q) ⇐⇒ dimV even = dimV odd.

Allday-Halperin, [2]: If X is a simply-connected and finite

CW-complex then

rk0(X) ≤ −χπ.

Theorem 2.8

The preceding theorems combined with the definitions of χc and
χπ allow us to set:

dimV pair = n
dimV impair = n+ p with p ≥ 0

dimV = 2n+ p
χπ = −p

rk0(X) = p − ε where ε ≥ 0
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The Hilali conjecture becomes

dimH∗(ΛV ,d) ≥ 2n+ p.

That of Halperin is now equivalent to

dimH∗(ΛV ,d) ≥ 2p−ε.

The promised connection is written as follows:

Hilali conjecture + (2n ≥ 2p−ε − p) =⇒ Toral rank conjecture
Toral rank conjecture + (2n ≤ 2p−ε − p) =⇒ Hilali conjecture

Remark 2.1

We show that

El Krafi, Hilali and M., (2016), [13]: The toral rank conjecture

holds for any manifold of dimension less than 16, and whose
rational toral rank is equal to 4.

Theorem 2.11

4 Theriault Conjecture

Around 2015 we were interested in the rational homotopy version

of the following open question asked by S. Theriault: Given a topo-
logical space X, what may one say about the nilpotency of aut1(X)

when the cocategory of its classifying space Baut1(X) is finite? Here

aut1(X) denotes the path component of the identity map in the set of
self homotopy equivalences of X. More precisely, we proved that

HnilQ(aut1(X)) � cocatQ(Baut1(X)),

when X is a simply connected CW-complex of finite type and that

the equality holds when Baut1(X) is coformal. Many intersections

with other popular open questions were stated.
In fact, many different definitions of the cocategory were known:
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• rational version: cocatQ, defined in [58];

• Hovey version: Hcocat, defined in [34]);

• inductive version: indcocat, defined in [27];

• Whitehead approach version: wcocat defined in [33].

We know that

wcocat(X) ≤ indcocat(X) ≤Hcocat(X) ≤ cocatQ(X).

We focused on the rational version of the cocategory given by Sbaï in
terms of Quillen models in the following sense:

Theminimal Quillen model is dual to the Sullivan minimalmodel

and involves free differential graded Lie algebras (DGLA) (LW ,∂),
in opposite of CDGA. Here W is a graded vector space W ,
and LW is equipped with a decomposable differential (i.e., ∂ :

LW −→L
≥2
W ), where Lk

W designates the set of brackets of length

k.

Definition 2.3

Quillen showed in [52], that any simply connected and ratio-

nal CW-complex of finite type X, admits a minimal Quillen model
(LW ,∂), unique up to isomorphism, which encodes the rational ho-

motopy type as follows:

H∗(LW ,d) � π∗+1(X)⊗Q

W � H̃∗+1(X;Q)
.

In particular, ∂LW ⊂ L2
W when X is formal, while LW � π∗+1(X)⊗Q

in the coformal case.

Sbaï defined in [58] the rational cocategory ofX, denoted through-

out this book by cocatQ(X), to be the smallest integer (or infinite)
such that the projection

(LW ,∂) −→ (LW /L≥n+1W ,∂)

admits a retract. In particular we have:

• cocatQ(X) = 0 if and only if X is contractible;
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• cocatQ(S
2n+1) = 1 and cocatQ(S

2n) = 2.

On the other hand, given X, a topological space,

• aut(X) denotes the set of its self homotopy equivalences, that

are maps f : X −→ X that admit a homotopy inverse;

• aut1(X) denotes the identity path component.

S. Theriault asked the following:

Theriault’s open question: Is it true that Hnil(aut1(X)) is finite
whenever cocat(Baut1(X)) is?

Conjecture 5

Here, Hnil(aut1(X)) denotes the homotopical nilpotency of aut1(X),
viewed as a connected grouplike space. That is the least integer n
such that the (n+1)-th commutator cn+1 is nullhomotopic. Note that
the iterated commutators cn: G

n −→ G are inductively defined, us-

ing the homotopy inverse, as follows: c1 is the identity, c2(a,b): =

aba−1b−1 and cn: = c2◦ (cn−1, c1). We answered positively to this open
question in a rational homotopy theory setting. More precisely we

proved that:

El Krafi and M. (2017), [15]: Let X be a simply connected

CW-complex of finite type. If cocatQ(Baut1(X)) is finite, then
HnilQ(aut1(X)) is also. Moreover, we have

HnilQ(aut1(X)) � cocatQ(Baut1(X)).

Theorem 2.12

and that

El Krafi and M. (2017), [15]: Let X be a simply connected

CW-complex of finite type, such that Baut1(X) is coformal. If
cocatQ(Baut1(X)) is finite, then HnilQ(aut1(X)) is also. More-

Theorem 2.13
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over, we have

HnilQ(aut1(X)) = cocatQ(Baut1(X)).

The formal case was discussed in

El Krafi and M. (2017), [15]: Let X be a simply connected

CW-complex of finite type, such that Baut1(X) is formal. If

cocatQ(Baut1(X)) is finite, then HnilQ(aut1(X)) is also. More-
over, we have

HnilQ(aut1(X)) � 2.

Theorem 2.14

In addition of solving completely Theriault’s open question in
a rational context, our theorems fit nicely with other well known

open problems: the formality or coformality of Baut1(X). Indeed,
when Baut1(X) is of finite rational cocategory, our results induce that

HnilQ(aut1(X)) � cocatQ(Baut1(X)) is an obstruction of the coformal-

ity of Baut1(X), while the inequality HnilQ(aut1(X)) > 2 is an ob-
struction of the formality of Baut1(X). Note also that H-spaces are

formal, and that still opened a more general question, if Baut1(X) is

a rational H-space? We proved that:

El Krafi and M. (2017), [15]: If G is a topological group such

that Baut1(G) is a rational H-space with a finite rational cocat-
egory, then

Hnil(G) ≤ 2.

Theorem 2.15

In particular, Baut1(G) may be H-space only if Hnil(G) ≤ 2 (i.e. G
is homotopically trivial or abelian or its inner automorphism group
is abelian).
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5 Rational homotopy type classification

Since 2011, we have been interested in the folkloric problem to clas-

sify the rational homotopy type. Problem which gave rise to many
research works (see [5],[43], [59], [64], [65], [66]). Our approach is

to assemble a catalogue in higher dimensions which will lead to see-

ing some pattern. We were able to classify, following their rational
homotopy type, all simply connected and elliptic topological spaces

whose cohomological dimension is less than 9. Details of our classi-

fication are summarised in the following tables:

Hilali, Lamane and M. (2012), [35]: If X is a simply connected

and elliptic space with cohomological dimension equal to 8 and

whose homotopical invariant χπ is non zero, then its rational
homotopy type is given by:

Rational homotopy type Condition

S2k+1 ×S2k+1 ×S2k+1 fd(X) = 3(2k +1)

Sn ×Sn ×S2n fd(X) = 4n, with n is odd(
Sn ×Sn ×S2n

)
#S2n

(2)
fd(X) = 4n, with n is even

S2k+1 ×S2k+1 ×S2(k+p) fd(X) = 2(2k +1) + 2(k + p)

S2n ⊗
(
Sn ×S2n

)
×S2(n+p)+1 fd(X) = 4n+2(n+ p) + 1

S2n ×S2n ×S2(n+p)+1 fd(X) = 4n+2(n+ p) + 1

S2n ×S2(n+p)+1 ×S2(n+p)+1

S2n ×Sk ×Sk k ≥ 2n+2

S2n ×S2k+1 ×S2(n+k)+1

S2n ⊗
(
S2k+1 ×S2(n+k)+1

)
Sn
(3)
⊗S2k+1

S2k+1 ⊗S2n+1 ⊗S2p+1

E E : the total space of the fiber

with S2k+1 ⊗S2n+1 as base space

S2n+1 ×Ya a ∈Q∗

Theorem 2.16

30



Hilali, M. and Yamoul (2016), [40]: If X is a simply connected

and elliptic space whose cohomological dimension is less than

8, then its rational homotopy type is given by:

dimH∗(X;Q) Rational homotopy type

1 ∗

2 Sn

3 Sn
(2)

4 Sn ×Sm

Sn
(3)

Yλ with H∗(Yλ;Q) =Q[a,b]/(ab,a2 −λb2)
5 Sn

(4)

Sn
(3)
#Sm

(2)

6 and χπ = 0 Sn
(5)

Sn ×Sm
(2)

Pλ with H∗(Pλ;Q) =Q[a,b]/(ab,a2 −λb4)
Qλ with H∗(Qλ;Q) =Q[a,b]/(b2 + ab+λa2)
Rλ with H∗(Rλ;Q) =Q[a,b]/(a3,b2 +λa2)

6 and χπ � 0 Sn ×Sm
(2)

Tn,m, the total space of the fibration
Sn+m−1 −→ Tn,m −→ Sn ×Sm

7 Sn
(6)

Sn
(2)
#Sm

(5)

Sn
(3)
#Sm

(4)

R with H∗(R;Q) =Q[a,b]/(a2b,a3 − b2)
8 and χπ = 0 Sn

(7)

Sn
(4)
×Sm

(2)

Sn
(4)
#Sn

(4)

Sn
(5)
#Sm

(3)

Sn
(2)
×Sm

(2)
×Sk

(2)

Pa,b,c with H∗(Pa,b,c ;Q) =

Q[a,b,c]/(a2 − abc,b2 − abc,c2 − abc)

Theorem 2.17
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Hilali, M. and Tarik (2015), [38]: If X is a simply connected

and elliptic space such that dimH∗(X;Q) = 9, then its rational

homotopy type is given by the following table

H∗(X;Q) � (ΛV ,d) �

Q[a]/(a9) (Λ(a,x),d)
with da = 0, dx = a9

Q [a,b] /
(
ab,a7 − b2

)
(Λ(a,b,x,y),d)

with da = db = 0

dx = ab, dy = a7 − b2

Q[a,b]/(ab,a6 − b3) (Λ(a,b,x,y),d)
with da = db = 0

dx = ab, dy = a6 − b3

Q [a,b] /
(
ab,a5 − b4

)
(Λ(a,b,x,y),d)

with da = db = 0

dx = ab, dy = a5 − b4

Q [a,b] /
(
a3,b3

)
(Λ (a,b,x,y) ,d)

with da = db = 0

dx = a3, dy = b3

Q[a,b]/(a3 + ka2b,b3 + k′ab2) (Λ (a,b,x,y) ,d)
with da = db = 0

dx = a3 + ka2b
dy = b3 + k′ab2

Q [a,b] /
(
a2b,a5 − b2

)
(Λ (a,b,x,y) ,d)

with da = db = 0

dx = a2b, dy = a5 − b2

Q[a,b]/(a3 − ab,ka6 + k′b3) (Λ(a,b,x,y),d)
with da = db = 0

dx = a3 − ab
dy = ka6 + k′b3

Q [a,b] /
(
a3b,a3 − b2

)
(Λ(a,b,x,y),d)

with da = db = 0

dx = a3 − b2, dy = a3b

Theorem 2.18

32



Chapter 3

Topological Robotics

1 Introduction

Around 2012, we switched to applied algebraic topology, especially

to its application in robotics. The topological study of the robot mo-

tion planning algorithms emerged in 2003-2004 with the works of M.
Farber (see [17], [18]). In fact, motivated by the topological study

of the motion planning algorithms using tools from algebraic topol-

ogy, Michael Farber considered a path connected topological space
X, and equipped its path space PX with the compact open topology.

He viewed any motion planning algorithm of any mechanical robot
that moves on the configuration space X to be an:

• Input: a pair (A,B) of two given points in the configuration

space X;

• Output: a continuous path from A to B and hence a continuous

section

s: X ×X −→ PX
(A,B) �−→ s(A,B)

of the canonical projection

π: PX −→ X ×X
γ �−→ (γ(0),γ(1))

.
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The path-connectedness of X ensures the existence of such section.
Its continuity, which ensures the robot stability while moving through

X, is equivalent to the contractibility of X, (i.e. X is homotopic to a
point). Roughly speaking, the continuity of motion planners means

that close initial-final pairs (A,B) and (A′ ,B′) produce close motions

s(A,B) and s(A′ ,B′). In other words it interprets the stability of the
motion, when the configuration space X is contractible.

2 Topology ofmotion planning algorithms

We were especially interested to learn more about the topology of

the non empty set of the continuousmotion planning algorithms, de-
noted hereM(X), whereX is a path-connected and contractible topo-

logical space. We firstly topologized M(X) with the open-compact

topology as a subset of map(X ×X,PX). Our first main result states
that

Derfoufi andM. (2015), [24]: If X is a path-connected and con-

tractible CW-complex, thenM(X) is also contractible.

Theorem 3.1

However M(X) is contractible, i.e., homotopically trivial, it is not

necessarily topologically poor. We focused later on the study of its
topological properties by considering the special case, when X is a

normed vector space. In fact, when X is a normed vector space, the
open-compact topology on PX coincides with that of the uniform

convergence and this allows us to study the stability of a robot mo-

tion using norms. We especially prove that

Derfoufi and M. (2015), [24]: If X is a normed vector space,

thenM(X) is a regular space.

Theorem 3.2

34



Let us recall, that

A topological space X is said to be regular, when for any non

empty closed set K and any point x � K , there exists a neigh-
bourhood U of x and a neighbourhood V of K that are disjoint.

Definition 3.1

Concisely speaking, it is always possible to separate x and K with

disjoint neighbourhoods, when x � K .
Our second purpose was to approximate motion planning algo-

rithms on X by piecewise affine ones. This is very useful, in the sense

that although we know enough about the existence of motion plan-
ning algorithms, we know less how to describe and determine it ex-

plicitly, hence one can appeal to some discretization methods to ex-
plicit some motion planning algorithms. More precisely, we proved

that:

Derfoufi and M. (2015), [24]: If X is a normed vector space,
and K is a compact of X ×X, thenMAff

K,PX is dense isMK,PX .

Theorem 3.3

Here MAff
K,PX denotes the local piecewise affine motion planning al-

gorithms on any compact subset K of X ×X, where

A motion planning algorithm s on X is called piecewise affine

if and only if for any pair of points A,B ∈ X, there exists a sub-
division

t0 = 0 < t1 < ... < tn−1 < tn = 1 of [0,1] such that

s(A,B)(t) = ait + bi , on each [ti , ti+1].

Definition 3.2

3 Loop topological complexity

As seen here above, when the configuration space X is contractible,
the robot motion is stable. In the opposite case, and in order to mea-
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sure the complexity of this stability, M. Farber defined the homotopy
invariant TC(X), called topological complexity, to be:

TC(X) is the minimum among the normalized cardinalities of

all open coverings (Ui )0≤i≤k of X ×X, over each of which

ev: PX −→ X ×X
γ �−→ (γ(0),γ(1))

.

has a local continuous section si :Ui −→ PX, i.e.,

ev ◦ si = idUi
.

Definition 3.3

It was well known, that have:

• TC(X) = 0 if and only if X ∼ ∗, from [17];

• TC(X) = 1 if and only if X ∼ S2n+1, from [28];

• TC(S2n) = 2, from [17].

In his founding paper [17], M. Farber was not interested in the return

motion. He made up for this some years after and focused with M.

Grant on the symmetric case (i.e., when the robot’s going and coming
motions are the same). They defined the notion of symmetric topolog-

ical complexity, denoted TCS (−), and showed that

TC(X) ≤ TCS (X) see [19]).

We were tempted to waive this restriction on the return motion and

let the robot free to take any arbitrary way to come back to its depar-
ture point, as in the case of the motion of a drone, or an unmanned

air-plane, or a guided TV camera. The famous NP-complete prob-

lem of vehicle routing with pick-up and delivery can also be studied
throughout this angle.

That was our first inspiration to define and study topologically
and homotopically the concept of loop motion planning algorithm (LMPA

for short).
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A LMPA over X, is any continuous section s: X ×X −→ LX of
the loop bi-evaluation

evLP: LX −→ X ×X

γ �−→ (γ(0),γ
(
1
2

)
)

.

Definition 3.4

Here, the free loop space, LX: = {γ : XS1
−→ X continuous} is en-

dowed with open-compact topology, the input is a pair of points

(A=departure, B=target), while the output should suggest to the robot

a target by requiring a come-back to the departure point. We firstly
proved that:

Derfoufi and M. (2015), [25]: If X is a path-connected topo-
logical space, then LMPAs on X exist if and only if X is con-

tractible.

Theorem 3.4

Following Farber’s spirit we define the loop topological complexity
of X, denoted here TCLP(X), to be:

TCLP(X) is minimum among the normalized cardinalities of all
open coverings (Ui )0≤i≤k of X ×X, over each of which evLP has

a local continuous section si :Ui −→ LX (i.e., evLP ◦ si = idUi
).

Definition 3.5

In particular, we proved that:

Derfoufi andM. (2015), [25]: If X is a path-connected topolog-

ical space, then TCLP(X) is a homotopical invariant, meaning:

X ∼ Y ⇒ TCLP(X) = TCLP(Y ).

Theorem 3.5

and that
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Derfoufi andM. (2015), [25]: If X is a path-connected topolog-

ical space, then

TCLP(X) = TC(X).

Theorem 3.6

In addition o investigating a neglected specific robot motion, the

loop motion one; our approach yields to many applications and con-

nections with other results or well known open problems. The most

awesome, but not the least one, is that our loop TC generalizes both

the classical notion (introduced by M. Farber in [17]) and the sym-

metric one (introduced byM. Farber andM. Grant in [19]). Moreover,

whilst the symmetry of a going and coming robot motion increases

the complexity navigation, our requirement that the return is free

does not.

It is useful to note also the deep intersection between the loop

TC and the monoidal TC (denoted TCM (−) and introduced by Iwase-
Sakai in [41]): the two focus on the special case when the initial po-
sition of a robot motion coincides with the terminal one. Our theo-
rem may be viewed as a possible research direction supporting the
famous Iwase-Sakai conjecture (see [42]) about coincidence of the or-

dinary topological complexity TC and the monoidal one TCM .
Finally, we raised an open question: Though MLP(X) is homo-

topically trivial, algebraically it is not. The natural questions are:
What can one do or interpret (in terms of robotics) with this loop
motion product? What structure does it induce?

The answer to this question leads us to a new exciting research
work as will be described in the next section.

4 String Topological Robotics

As mentioned above, we were tempted to study the topological, ho-

motopical or algebraic behaviour of the set of LMPA, denoted here
MLP(X). Firstly, we noted thatMLP(X) as a map space can be topol-

ogized with the induced open compact topology. Secondly, we have

seen that MLP(X) is non empty if and only if X is contractible. In
this case,MLP(X) is also contractible.
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Our first inspiration came from the natural concatenation of loops.
Therefore we firstly define a kind of concatenation on loop motion

planner, that we called the loop motion product. For any given LMPAs
s1 and s2 we put:

μ(s1, s2)(A,B)(t) = s1(A,B)(t) if 0 ≤ t ≤ 1
2

= s1(A,B)(3t − 1) if 1
2 ≤ t ≤ 2

3
= s2(A,B)(3t − 2) if 2

3 ≤ t ≤ 1

As illustrated here below, two LMPAs are composable if and only

if they have two common base points.

o =

�
A

�
B

�
A

�
A

�
B

�
B

This was our first inspiration to investigate homologically the be-
haviour of motion planners while [20], wherein a natural homomor-

phism of commutative graded algebras

Γ:H∗(Sect(q)) −→H∗(X
S1
): =H∗+n(X

S1
)

is well defined, where Sect(q) denotes the sections of the free loop
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space fibration

q: XS1
−→ X

γ �−→ γ(0)
.

As a key idea for their proof, Y. Félix and J. C. Thomas pointed out

that the composition of loops makes Sect(q) into a monoid with mul-
tiplication μ defined by

μ(s1, s2)(x)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s1(A)(2t) t ≤ 1

2

s2(A)(2t − 1) t ≥ 1
2

σ,τ ∈ Sect(q), t ∈ [0,1], x ∈ X

While reading Félix-Thomas approach in [21] to generalize Chas-
Sullivan string topology into a broad rational homotopy theoretical

setting, we get the inspiration to generalize Chas-Sullivan string the-

ory into a broad topological robotics setting.
A primarymotivation of the string theory was a remarkable prob-

lem posed by Sullivan in [60]: find a class of spaces with singularities

for which the signature of manifolds extends as an invariant corbor-
dism. The intersection homology groups provide a partial answer for

complex varieties. For their purpose, Chas-Sullivan assumed mani-
folds to be closed and orientable. They started by extending the con-

cept of intersection product to LX: = XS1
. Chas-Sullivan’s approach

consisted to:

• consider two families of based loops: Σ ∈ Ci(LX;Z)) an i-chain
of loops in X, and Θ ∈ Cj (LX;Z)) a j-chain of loops in X;

• intersect transversally inX the associative marked i-chain Σ(0) ∈
Ci(X;Z)) and j-chain Θ(0) ∈ Cj (X;Z));

• obtain an (i+j−n)-chainΣ(0).Θ(0) inX, alongwhich themarked
points of Σ coincide with that of Θ;

• create in LX a new (i + j − n)-chain Σ •Θ, by concatenating at
each point of Σ.Θ, loops that go around the loops of Σ and then

around the loops of Θ.

In fact, string topology works as follows. One has to :

• consider the evaluation map at time t = 0 defined by

ev0: Ci(LX;Z) −→ Ci(X;Z)

Σ �−→ Σ(−)(0): δ ∈ Δi �→ Σ(δ)(0)
.
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It links i-simplices in LX to that in X. Here Δ
i denotes the

i-simplicial standard and 0 is the base point of S1 = R/Z;

• consider some simplices Σ: Δi −→ LX and Θ: Δj −→ LX, such

that ev0(Σ) and ev0(Θ) intersect transversally in X.

• compute the intersection product Σ(−)(0).Θ(−)(0) at each point
(δ,δ′) ∈ Δi ×Δj such that Σ(δ)(0) =Θ(δ′)(0);

• perform the composition of the loops Σ(δ) and Θ(δ′) to obtain

a loop product, the (i + j − n)-simplex Σ •Θ : Δi+j−n −→ LX;

• define the loop homology by H∗(LX): =H∗+n(LX;Z).

The loop product (see [10]) passes to the homology and defines the

string product

Hi (X)⊗Hj (X)
•
−→Hi+j (X)

which endows H∗(X) with a structure of an associative and commu-
tative graded algebra (see [10]). Finally, they defined a loop bracket

{, } which passes to loop homology and induces on H∗(X) a structure

of Gerstenhaber algebra (i.e., the bracket is a bi-derivation of • and
satisfies the Jacobi identity). They also defined an operator Δ which

endows H∗(X) with a structure of Batalin-Vilkovisky algebra.
Now it is time to present our string topological robotics theory

claiming to link both topological robotics and string topology. For

this purpose, we consider G a compact Lie group which operates
transitively on a path connected n-manifold, X. (contractible or not,

compact or not, orientable or not). In other words, the mechani-

cal system presents a symmetry with respect to a given compact Lie
group.

Our first step was to set

LX ×X/G LX: = {(γ,τ) ∈ LX × LX:G.γ(1/2) = G.τ(0)}.

and

evLP : LX ×X/G LX −→ X ×X
(γ,τ) �−→ (γ(0),τ(1/2))

.

LX ×X/G LX can be viewed as a G ×G-space with the obvious multi-

plication
(g1,g2)(γ,τ) = (g1.γ,g2.τ)

and evLP : LX ×X/G LX −→ X ×X as a G ×G-fibration.
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We call a G-loop motion planner (G-LMP for short), any G ×G-

homotopic section of the loop evaluation evLP. That is any G ×
G-map

s: X ×X −→ LX ×X/G LX
(x,y) �−→ (γ,τ)

such evLP ◦ s is G ×G-homotopic to idX×X .

Definition 3.6

In other words, for any given pair (x,y) ∈ X2, there exists a pair of
loops (γ,τ) ∈ LX × LX such that γ(0) = x,τ(1/2) = y with G.x = G.y
and that where the transitivity of the action interferes. Here, global

sections are not asked to be continuous and X is not required to be
contractible. Therefore

MLP(X): = Sect(evLP)

is not necessarily contractible, and therefore its homology is not triv-

ial.

Secondly, inspired by Laudenbach’s works (see [45]), we defined

the bi-evaluation

ev0,1/2: M
LP(X) −→ X2

s �−→ (s(−,−)(0), s(−,−)(1/2))

to linkΣ : Δi −→MLP(X) as an i-simplex ofMLP(X) to σ: = ev0,1/2(Σ): Δ
i −→

X2 as an i-simplex of X2. Their faces are also linked thanks to the

relation

F(ev0,1/2Σ) = ev0,1/2(FΣ)

Let us now equip X2 with a chart A. A simplex Σ ofMLP(X)

is said to be small when there exists U(Σ) ∈ A (chosen once for
all) such that σ(Δi ) ⊂U(Σ).

Definition 3.7
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Thus, to a j-simplex Θ: Δj −→MLP(X) ofMLP(X) we associated θ: =
ev0,1/2(Θ) as a j-simplex in X, and we call the bi-simplex Σ×Θ: Δi ×

Δ
j −→MLP(X) ×MLP(X) small when both Σ and Θ are small. Σ ×Θ

is said to be transverse when σ × θ and all its faces are transverse in

X4 to the diagonal map

ΔX2 : X2 −→ X4

(x,y) �−→ (x,y,x,y)
.

Under such conditions,

W : = (ΔX2 ◦ (σ ×θ))−1 (X4)

is an orientable sub-manifold of Δi ×Δj with corners and of dimen-

sion i + j − 2n.
Let ev be used for short to denote ev0,1/2. To any pair (δ1,δ2) ∈W

we associated the pair

(s1, s2): = (Σ×Θ)(δ1,δ2) ∈M
LP(X)×MLP(X).

The following commutative diagram outline the situation

(δ1,δ2) ∈W ⊂ Δ
i ×Δj Σ×Θ

��

σ×θ
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

(s1, s2) ∈M
LP(X)×MLP(X)

ev×ev

��

ΔX2 ⊂ X2 ×X2

In particular,

ev × ev(s1, s2) = (s1(−,−)(0), s1(−,−)(1/2), s2(−,−)(0), s2(−,−)(1/2))

as an element of ΔX2 is of the form (x,y,x,y). Thus s1 and s2 are

composable since they have two commons base points, namely x =
s1(−,−)(0) = s2(−,−)(0) and y = s1(−,−)(1/2) = s2(−,−)(1/2) and the

precedent diagram can be performed to get this diagram

W � Δ
i+j−2n

Σ.Θ : intersection LMP product

��
Σ×Θ

��

σ×θ
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

MLP(X)×MLP(X)

ev×ev

��

μ
��MLP(X)

ΔX2 � X2

This allowed us to define the intersection product as follows
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Let Σ : Δi −→MLP(X) and Θ: Δi −→MLP(X) two simplices in

MLP(X) of respective dimensions i and j .
Their intersection LMP product Σ.Θ: Δi+j−2n −→MLP(X) is de-

fined by
Σ.Θ: = μ ◦ (Σ×Θ)|W .

It can be extended naturally and linearly at the level of small
and transverse bi-chains.

Definition 3.8

Let C∗(M
LP(X)) denote the chain complex generated by the small

simplicies, and εk be the sign of the Jacobian of the coordinates change

U(FkΣ) −→ U(Σ). The next step consisted to define the homology of
LMPs

Let ∂: Ci(M
LP(X);Z) −→ Ci−1(M

LP(X);Z) the boundary operator

defined by

∂Σ: =
i∑

k=0

εk(−1)
kFkΣ.

Then we put

H∗(M
LP(X);Z): =H∗

(
C∗(M

LP(X),∂
)
.

Definition 3.9

After that, we extended, at the level of the homologyH∗(M
LP(X);Z),

the intersection LMP product to a string LMP product by setting

•: Hi (M
LP(X);Z)×Hj (M

LP(X);Z) −→ Hi+j−2n(M
LP(X);Z)

([Σ], [Θ]) �−→ [Σ] •Θ]: = [Σ.Θ]

.

Finally, we proved that this string LMP product is well defined, in

the sense that any given pair of homological classes ([Σ], [Θ]) can be

represented by a small and transverse bi-simplex and that the homo-
logical class [Σ.Θ] does not depend on the choice of this bi-simplex.

Indeed, we defined the following:
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Aboundary preserving homotopy of a given chainΘ =
∑

k nkΘk ∈

C∗(M
LP(X);Z) is a homotopy parameter family Θ

t =
∑

k nkΘ
k
k ,

with Θ
0 =Θ and such that if Θt

k and Θ
t
p have a common face at

time t = 0, then it is also at any time t.

Definition 3.10

and proved that

Derfoufi and M. (2016), [26]: For any bi-chain Σ × Θ, there

exists a boundary preserving homotopy Θ
t of Θ such that Σ ×

Θ
1 is small and transverse.

Theorem 3.7

Derfoufi and M. (2016), [26]: The string LMP product is asso-
ciative and commutative up to sign. More precisely,

[Σ] • [Θ] = (−1)|Σ|.|Θ|[Θ] • [Σ].

Theorem 3.8

Finally, by applying the regrading H∗: = H∗+2n, we got the fol-

lowing :

Derfoufi and M. (2016), [26]: H∗(M
LP(X);•) have a structure

of graded commutative and associative ring.

Theorem 3.9

In [47], we realize our aim, that to endow (H∗(M
LP(X)),•) with

structures of Gerstenhaber and Batalin-Vilkovisky algebras, we firstly

adapt our notations to that of Chas-Sullivan in order to adapt the ge-
ometric "proof" of Chas and Sullivan to our "robotic" setting. Hence

Σ: Δi −→ MLP(M) and Θ: Δj −→ MLP(M) will be replaced respec-

tively by x : Kx −→ M
LP(M) and y: Ky −→ M

LP(M). Therefore for
any kx ∈ Kx, one have

x(kx): M ×M −→ LM ×G LM
(m0,m1) �−→ x(kx)(m0,m1)
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with
x(kx)(m0,m1)(0) = m0

x(kx)(m0,m1)(1/2) = m1

If x × ŷ: Kx ×Ky × [0,1] −→M2 ×M2 is transverse to both ΔM2 and all

its faces, then the loop operator on LMP, 0,∗ emerges on

Kx∗y : = (x × ŷ)−1(ΔM2 ) = Kx ×M2 Ky × [0,1]

by putting

x ∗ y(kx,ky , s)(−,−)(t): =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
y(ky)(−,−)(2t) 0 ≤ t ≤ s

2

x(kx)(−,−)(1− 2t + s) s
2 ≤ t ≤ s+1

2

y(ky)(−,−)(2t − 1)
s+1
2 ≤ t ≤ 1

Moreover, and as in the Chas-Sullivan context, x ∗ y follows y from

y(ky)(−,−)(0) to y(ky)(−,−)(s), then from y(ky)(−,−)(s) to y(ky)(−,−)(1)
after traversing x. For s = 0, we find x • y, while s = 1 induces y • x.
Keeping this useful remark in mind, we claim that at the level of the
homology, we have.

M. (2020), [49]:

x • y = (−1)|x||y |y • x.

Theorem 3.10

and more precisely

M. (2020), [49]: H∗(M
LP(M) is an associative and commutative

graded algebra.

Theorem 3.11

Before going through defining the LMP bracket, we prove that

M. (2020), [49]:

x ∗ (y • z) � (x ∗ y) • z + (−1)(|x|+1)|y |y • (x ∗ z);

Theorem 3.12
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•• (x • y) ∗ z � x • (y ∗ z) + (−1)(|z|+1)|y |(x ∗ z) • y.

And set

M. (2020), [49]:

{x,y}: = x ∗ y − (−1)(|x|+1)(|y |+1)y ∗ x.

Definition 3.11

Finally, we get

[?] M. (2020), [49]: H∗(M
LP(M),•, {, }) is Gerstenhaber algebra.

Meaning that

• H∗(M
LP(M),•) is an associative and commutative graded

algebra;

• {, } is Lie bracket of degree 1;

• {x,y • z} = {x,y} • z + (−1)(|x|+1)|y |y • {x,z}.

Theorem 3.13

The natural way to get a Batalin-Vilkovisky algebra structure is
to use the circle action on LMPs and define the operator

Δx(kx,s)(t): = x(kx)(t + s).
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Chapter 4

Topological Data Analysis

1 Introduction

From 2016, we switched to another exciting area of research in the
applied algebraic topology. Topological Data Analysis (TDA for short)

is an emerging trend in exploratory data analysis and data mining.

It has known a growing interest and some notable successes (such
as the identification of a new type of breast cancer, or the classifica-

tion of NBA players, or the prediction of the future USA president)
in recent years. Indeed, with the explosion in the amount and va-

riety of available data, identifying, extracting and exploiting their

underlying structure has become a problem of fundamental impor-
tance. Many such data come in the form of point clouds, sitting in

potentially high-dimensional spaces, yet concentrated around low-

dimensional geometric structures that need to be uncovered.
The non-trivial topology of these structures is challenging for

classical exploration techniques such as dimensionality reduction.

The goal is therefore to develop novel methods that can reliably cap-
ture geometric or topological information (connectivity, loops, holes,

curvature, etc) from the data without the need for an explicit map-
ping to lower-dimensional space. Persistent homology is the main

tool of the TDA, it consists to represent any shape under a barcode.

As the saying goes, "every data have a shape, and any shape have a
meaning". Thus the key idea of TDA is to represent a data as a shape
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(a point cloud for example), and the issue its barcode (the meaning
of the data).

In the TDA community we agree, without formalizing it, that H.
Edelsbrunner is the founder of this theory. Indeed, the fast algorithm

described in his leader paper [14] triggered the explosion of interest

we currently observe because its availability as software facilitates its
application to a broad collection of problems and datasets.

We agree also that the G. Carlsson research works (see [8]), and
that the software platform and applications offered by its machine

intelligence software company Ayasdi, are the precursors of the cur-

rent popularity of TDA both in the scientific and industrial commu-
nities. For example, one widely reported top five global systemi-

cally important bank was that to build models required for the an-

nual Comprehensive Capital Analysis and Review (CCAR) process
took 1,800 person-months with traditional manual big data analytic

and machine learning tools, but took 6 person-months with Ayasdi.
Now, Ayasdi, founded in 2008, is considered as "A Big Data Start-

Up With a Long History"1, and recently announced a new 55 million

USD of funding, led by Kleiner Perkins Caufield & Byers (KPCB),
and joined by existing investors, Institutional Venture Partners (IVP),

Khosla Ventures, FLOODGATE, Citi Ventures, and other new in-

vestors, Center View Capital Technology and Draper Nexus.

2 Persistent homology

Persistent homology, as a topological data analysis tool, is a young

and quickly-developing research area at the intersection of mathe-
matics, statistics, and computer science. It seeks to use topology to

discern structure in a complex data by studying its shape. 2 Topology
takes on two main tasks: the measurement of shape and the repre-

sentation of shape. Both tasks are meaningful in the context of large,

complex, and high-dimensional data-sets. They allow measurement
of shape related properties within the data, such as the presence of

holes.

1The New York Times. January 16, 2013.
2G. Carlson: Any data has a shape and any shape has a meaning
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Given a point cloud, we want to use homology to describe data,
but our data is a point cloud and homology operates on simplicial

complexes. The first step is to associate to any points cloud a Čech
complex.

Given a cloud of points X = (xi )i and a number ε > 0, the as-

sociated Čech complex C(ε) is the simplicial complex whose p-
simplicies are the [x0, . . . ,xp], whenever the balls B(xi ,ε/2) have
a common point.

Definition 4.1

Figure 4.1: An example of a points cloud (left) and the corresponding

Čech complex.

While ε is growing, other Čech complexes will appear, and this

yields to a filtration of complexes

∅ =K0 ⊆ K1 ⊆ · · · ⊆ Km =K.

Figure 4.2: Example of filtered Čech complex.

The associated homology of that kind of chain of complexes, is
what we call the persistent homology of the initial cloud of points
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X = (ai )i . The idea of persistent homology is to look for features
that persist for some range of parameter values. Typically a feature,

such as a hole, will initially not be observed, then will appear, and
after a range of values of the parameter it will disappear again. The

resulting persistent Betti numbers are usually given as barcodes, and

represent how the homology changes through the filtration.

Figure 4.3: From points cloud to barcodes.

The beginning of a barcode can be thought of as a birth time of
a persistent homology class and its end as the death time. The sig-

nificance of a homological feature is given by the length of the cor-

responding barcode. It is a way to encode the persistent homology
of a data set in the form of a parametric version of a Betti number

and represents each persistent generator with a horizontal line be-
ginning at the first filtration level where it appears, and ending at

the filtration level where it disappears.

A persistent diagram is another equivalent way to visualize the
evolution of the topological features in the filtration, by summariz-

ing the filtration as two dimensional point sets with multiplicities. A

point (x,y) with multiplicity m represents m features that all appear
for the first time at scale x and disappear at scale y. Features appear
before they disappear, as the points lie above the diagonal x = y. The
difference y −x is called the persistent of a feature. A class of homol-

ogy that appears at times i and disappears in another value j will be

represented by the point of coordinates (i, j). The persistent of a class
will be the real value of j−i, this diagram is called persistent diagram
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because it will encode the persistent of the homology groups of the
simplex. An interesting case of persistent diagrams is that associated

to R-valued functions f : X → R, where the filtration is given by the
sub level sets Xε: = f −1(−∞,ε].

Figure 4.4: Example of persistent diagram.

One way to compare how two persistent diagrams are closed or
not, is the Bottleneck distance used to calculate the distance between

two persistence diagrams D1 and D2 by setting

dB(D1,D2): = inf
μ

sup
x∈D1

‖x − μ(x)‖∞,

where μ:D1→D2 range all the bijections from D1 to D2.

The fundamental result that has allowed the scientific recogni-
tion that persistent homology enjoys now is the stability theoremwhich

states that a small perturbation in the input filtration leads to a small
perturbation of its persistence diagram.

Let f ,g : X→R two tame functions, then

dB(Dgm(f ),Dgm(g)) ≤ ‖f − g‖∞ .

Stability theorem 4.1
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Figure 4.5: Bottleneck distance is 1-Lipschitz function.

3 Images Recognition

One of the exciting application areas of mathematics we investigated

was the recognition of objects in digital images. It has received the

attention of many researchers in order to evaluate and improve the
performance of descriptors, especially that of the shape descriptor.

Indeed, a huge amount of images are produced and analysed in dif-

ferent domains such as biology, industry, astronomy, medicine and
security. These images contain some interesting objects that have to

be recognized, classified and then identified. To represent an image
or a part of it and describe the pertinent information, we use the fea-

tures extracted there-from. These extracted features are represented

in different ways (vector, signature, barcode, ...). This representation
is called a shape descriptor. The shape descriptors are a powerful tool

used in a wide spectrum of computer vision and image processing

tasks such as object matching, classification, recognition and identi-
fication.

It is useful to note that there exists a huge variety of object recog-

nition approaches, but the general concept remains the same: An
object recognition system uses training data sets containing images

with known and labelled objects and extracts different types of in-

formation (colors, edges, shapes and so on) based on the chosen al-
gorithm. The first step of a recognition system is to detect interest

locations (objects) in the images and describe them. Once the de-

scriptors are computed, they are compared to the objects presented
in an image to recognize and identify them.

The shape descriptor relies on two types: The global features and

the local ones. In the global one, the image is represented by one
multidimensional feature vector, describing the information in the
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whole image. On the other hand, local features allow detection of
interest regions in an image and represent them as n vectors where

each one describes a certain feature, like color, texture, shape or ori-
entation. It is well known that local features are very successful,

powerful and faster than global ones [BS]. This is due to the lack of

accuracy for global features which generally can not distinguish the
foreground from background of an image.

In [50], we considered the persistent homology as an algebraic

tool measuring the topological features of shapes. To digital images,

we associated cubical complexes instead of triangulation because it
significantly reduces the size of complexes. We implement this al-

gebraic characterization by an algorithm that represents any digital
image as bare codes in the form of finite union of intervals. The ben-

efits of this algorithm are not only the shape description, but also the

shape comparison. Indeed, by using the Bottleneck distance of bar-
codes, the algorithm allows us to answer how close or far two shapes

are. So, we developed a shape descriptor, based on persistent homol-

ogy ideas. It is an algorithm, whose input is a digital image, and that
issues some barcodes as a signature. The strength of our algorithm

is that it combines the two classic approaches: the global one by in-

volving all the pixels, and the local one by associating to each pixel 8
new neighbours thanks to the Low Star Process.

More precisely, our algorithm aims to represent the objects of an

image (classes) as barcodes to get a shape signature (descriptor). This
descriptor will be an efficient tool to recognize an object and identify

it, this will be satisfied when we build a knowledge database that

contains the objects of our interest with their barcodes and their label
(identification). The output of the algorithm will be compared to all

the objects present in the database until we find the most similar

barcode.

For our purpose, we opted for cubical persistent homology as an
efficient application of persistent homology in domains where the

data is naturally given in a cubical form, as in the case of digital im-
ages. By avoiding triangulation of the data, we significantly reduce

the size of the complex. The approach is to use n-cubes [0,1]n instead
of n-simplicies, the remainder (like boundary operator or boundary
matrix) still roughly speaking the same.

Simplicial complexes are called cubical complexes, and the associ-
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Figure 4.6: Cubical complex triangulation vs. simplicial complex

triangulations.

ated persistent homology is called cubical persistent homology. In this

new context, the non-null pixels play the point cloud. The cubical

complex is kindly built as follows: To any pixel B(i, j) (considered
as 0-cube and colored in yellow), we associate 8 neighbours (four 1-

cubes are colored in blue and four 2-cubes are colored in red).

Figure 4.7: Cubical complex: The first step.

This representation of cubical complexes from images permit us

to have an idea about the relationship between cells by reading their
coordinates. For each pixel, we can store the necessary information

in 3x3 array. The coordinates of any cell gives immediately its di-
mension:

• it is an 0-cube when its coordinates are (even,even);

• it is a 1-cube when its coordinates are (even,odd) or (odd,even);

56



• it is a 2-cube when its coordinates are (odd, odd).

Moreover, the benefit of this is that we can track down the past coor-
dinates of any pixel by dividing the new ones by two.

Figure 4.8: Cubical complex built over a gray-scale 2D image with
4x4 pixels.

It is worth pointing out, that if (i, j) are the coordinates of a pixel
in the original binary matrix, those in the cubical complex should

be (2i,2j). This is another strong point to count in favour of our al-

gorithm; that to switch smoothly between the initial and the final
coordinates by dividing or multiplying by 2. Thus we define a func-

tion "neighbours", whose aim is to associate to each pixel B[i, j] its
8 neighbours C[2i + ε,2j + ε′], where ε,ε′ ∈ {−1,0,1}, with some ex-
cluded values, especially when the pixel is on the border. For exam-

ple, ε � −1, whenever the pixel locates in west border. Our function
(see Algorithm 1) takes into account this technical but useful detail.

Once the cubical complex was built as (2I − 1) × (2J − 1)-matrix),

we set the following Algorithm 2) to preserve in any pixel the same
as that in the original matrix. We use the low-star rule, which states

that any n-cube and all its faces should have the same values. We
firstly start with the pixel of high value, and assign this value to all

its neighbours. We move on to the next one and assign the not yet

assigned neighbours and so on.
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Algorithm 1 Function neighbours((x,y),X):(x1,y1).

Input: A matrix and the position of an element

Output: Position of the neighbours of the element
for X − 1 < x1 < X +2 do

for Y − 1 < y1 < Y +2 do

if −1 < x < X,−1 < y < Y ,X! = x2||Y ! = y2,0 < x1 < X,0 < y1 <
X then

return(x1,y1)
end if

end for

end for

Algorithm 2 Function BuildComplex(B)

Input: Matrix filled with the pixels from the original matrix

Output: Matrix representing the cubical complex

lp¸[],flag=-1
List L: elements of the original matrix sorted in descending order

for i← 0 to len(L) do
posMax← PositionOf L[i]inB
Lneighbors← neighbors(posMax[0],posMax[1],B)
Lp← add(Lneighbors)
f lag← f lag +1

for k← 0 to len(lp) do
for p← 0 to len(lp[k]) do
if b[Lp[k][p][0],Lp[k][p][1]] == 0 then

[Lp[k][p][0],Lp[k][p][1]] = neighbors[f lag]
end if

end for

end for
end for
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Sometimes, some values are extremely huge, in this case we nor-
malize it by re-applying the transformations

B[i, j] ← B[i, j] +
i+I∗j
α∗I∗J

B[i, j] ←
B[i, j]

maxB[i, j]

Figure 4.9: An example of a cubical complex from a digital image.

The next, crucial and important step consists of building the bound-

ary matrix. We start by building a filtration in this natural ordering:

• K0: = ∅;

• K1: = the 2-cube of high value and all its faces;

• K2: = the next 2-cube and all its faces;

• Once all the 2-cubes are swept, we pass to the 1-cubes.

The boundary matrix should be aN×N-array, whereN is the number
of all different values that appear in the cubical complex. It should

encode the evolution of the filtration here above. Thus in the 0-th
stage all values will be null. In the first stage, we put boundary ma-

trix(i,j)=1, once the j-th cube is a neighbour of the i-th cube, where

the filtration indices are assigned from higher to lower
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Algorithm 3 Function boundaryMatrix(Cubical complex C: matrix).

Input: Cubical matrix C (each cube has faces named Bj

Output: Boundary matrix
for each cube Ci of K do

Column←filtration index of Ci

for each cube Bj in boundary of Ci do

row← filtration index of Bj

boundaryMatrix(row,column)← 1
end for

end for

Figure 4.10: An example of a boundary matrix from a cubical com-
plex.
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The final step consists of reducing the boundary matrix following
the [12] approach, where the Smith normal form of the boundary

matrix is used to record the face relationship between simplices of
dimension p and p − 1. Let low(j) be the row number of the lowest

non-zero entry in column j , where we set low(j) = 0 if the entire

column is zero. A matrix is called reduced when each row has at most
one entry that is the lowest 1 for a column. To reduce our boundary

matrix, 0 proceed from left to right by using only column additions

(see Algorithm 4).

Algorithm 4

Input: Boundary matrix

Output: Reduced boundary matrix

for j← 1 to n do
while ∃j ′ < j with low(j ′) � low(j) do
add column j ′ to column j

end while

end for

Figure 4.11: An example of a bare code from a digital image.

Fast and robust feature extraction is crucial for many computer

vision applications. The performance of a shape descriptor or the
efficiency of shape features is related to some essential properties,

for example the location, the rotation and the scaling changing of
the shape. Since our algorithm is based on the pixel coordinates,

which it never loses thanks to its ability to track it at any time in

the process, then such essential properties do not affect the extracted
features which are still as robust as possible against noise.
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4 Neuronal sciences

We focused sometimes on neuronal sciences, especially on the NASA
experiences of Limoli and his team (see [54],[55], [56]) on the pos-

sible and significant damage in dendrites and spines in the neural

networks of the Mars explorers that may be caused by cosmic radi-
ation. Our key idea was to use the NASA images of some mice that

were exposed for 12 weeks to cosmic radiation. We associate to their

neural network bare codes that give us more information, than that
given by the original experiences.

The neural networks are a neural arrangement, each neural is ex-

tended by a dendrite topped with thorns called spines. These spines
play an important role in the communication between neurals.

Figure 4.12: Structure of a typical dendrite.

Dendrites are the branches of neurons that receive signals from other

neurons and pass the signals into the cell body. The axon is the part
of a neuron that sends the signal. Axons that feel like a highly devel-

oped dendrite are long and thin. The axon carries an electrical signal

from the cell body to the synapse: the structure that permits a neuron
to pass an electrical or chemical signal to another neuron. Synapses
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are essential to neuronal function: neurons are cells that are special-
ized to pass signals to individual target cells, and synapses are the

means by which they do: A dendrite from one neuron and an axon
from another neuron meet at a synapse.

Figure 4.13: Communication process between two neurons.

Limoli and his team have to make an important breakthrough: to

select the best candidates for a one-way trip to Mars. For this pur-
pose, they took male mice to a particle accelerator at the NASA Space

Radiation Laboratory to catapult oxygen and titanium ions down a
100-meter transport tunnel and into the restrained rodents’ brains

at roughly two-thirds the speed of light. Six weeks after this ra-

diation exposure, they noticed distinct changes to the brains of the
mice, notably inflammation that disrupted communication between

the neurons. This breaking off of the neuronal structures known as

dendrites, while the loss of the branch-like synapses are often asso-
ciated with cognitive impairments and Alzheimer’s disease. Going

further, the NASA biologists did some behavioural experiments with
the exposed mice to see how their neural tissue damage might affect

their memory and learning abilities. Sure enough, the mice exhib-

ited less curiosity and seemed more confused than mice who had not
been exposed to space-like radiation. These symptoms are similar to

the cognitive changes when cancer patients are undergoing radiation

treatments.
Thus possible damage during a space mission may alter cogni-

tive function, including detriments in short-term memory, reduced
motor function, and behavioural changes, which may affect perfor-

mance and human health. This radiation induces changes in synaptic

plasticity underlyingmany neuro degenerative conditions that corre-
late to specific structural alterations in neurons that are believed to
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be morphologic determinants of learning and memory. This cosmic
radiation causes some cognitive dysfunction during the novel object

recognition (NOR) task, the object in place (OiP) task or the temporal
order (TO) task.

Figure 4.14: Cognitive deficits evaluated 12 weeks after cosmic radi-

ation exposure.

The figure here below shows how irradiation significantly reduces

the recognition memory, that it reduces the preference to explore an
object found in a novel location and that it significantly impairs the

memory by a reduced preference for the less recently explored object
in the Temporal Order task (TO).

Figure 4.15: Reduced dendrite complexity of neurons after 12 weeks
of cosmic radiation.

This quantification of the dendrite parameters, as bar charts, shows

that the dendrite branching and length are significantly reduced 12

weeks after exposure to 5 or 30 cGy48Ti or 16O or 30cGy16O parti-
cles.
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Figure 4.16: Reduced spine density of neurons after 12 weeks of cos-

mic radiation.

Our approach was the following: One may use these images to re-

gionalize dendrites and spines and get, by using the Voronoi dia-

grams, some adjacent areas where spines and dendrites are concen-
trated. Once, the centers of the adjacent areas are connected, we get

a Delaunay diagram which yields to a Rips complex on which TDA

theory can be applied to get bare codes.

Firstly, to get the complex of Rips, we choose a threshold distance

between the dendrites and spines region, that is the average distance

between these regions for a graph exposed to 0cGy. With this thresh-
old distance, we get a filtered graph which leads to a boundary ma-

trix.

Secondly, we implement a matrix reduction algorithm to pair the

persistent data, which represents the focus of cosmic radiation ex-
posure. Finally, we calculate the diameter between two distant ar-

eas and compare to that obtained for another exposure to get a pre-
diction tool of the different cosmic radiations from the different ob-

tained diameters of two focus of dendrites-spines cliques). In what

follows, we explain our approach step by step : Step 1 : Get the adja-
cency matrix from an image (as explained by the image here below).
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For this purpose we implemented the following algorithm:

Algorithm 5 Adjacency matrix.

Input: image

Output: matrix pixel threshold
i, j=size of image

for for u in i do
for for v in j do
pixel=python_image_pixel

if pixel == green or pink, then

matrix_pixel(i,j)=1
else

matrix_pixel(i,j)=0
end if

end for

end for

Step 2: It consists to create the associated Voronoi diagrams by

inserting the sites events in a file

Here above some images of the dendrite and spines repartition
after a cosmic radiation and their associated Voronoi diagrams.
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Algorithm 6 Voronoi diagrams.

while E is no empty do
withdraw a p event

if this event is a site then

create a new parabolic arc
create the Voronoi edge

delete the depraved circle event

insert circle events
end if

if this event is a circle then
delete parabolic arc

create the Voronoı vertex

delete the depraved circle event
insert circle events

end if

end while

Figure 4.17: Voronoi diagram issued from a 5 cGy48Ti radiation.
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Figure 4.18: Voronoi diagram issued from a 30 cGy48Ti radiation.

Step 3: Build a Deluanay complex from the recently constructed

Voronoi diagram as outlined by the following picture:

Figure 4.19: Examples of Delaunay complexes issued from Voronoi

diagrams by using the Algorithm 7

Step 4: To build a Rips complex from the obtained Delaunay trian-
gulation, we consider the Wasserstein distance in the following algo-

rithm:

Step 5: The final step is to get the boundary matrix. The idea is

that since for all r0 ≥ r, we have Rips(N,r) ⊂ Rips(N,r0), then F =

{Rips(N,r),0 ≤ r ≤ rmax} is a filtration. This Rips filtration induces a
boundary matrix as stated by the following algorithm:
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Algorithm 7 Delaunay diagram

Input: Voronoi points
Output: Delaunay tesselation

for u from 0 to n− 1 do
mnb=mostnearneigbor(u)

rn=rightneigboor()

while rn!=mnb and rn!=-1 do
if rn==-1 then

convexe[u]=1

lneig=leftneigbor()
if lneig!=-1 then

get neighbor
end if

while lneig!=-1 do

delaunay tesselation= neighbor
end while

end if

end while
end for

Algorithm 8 Rips complex.

Input: Delaunay Graph

Output: Rips complex

j = 0,wass = r
i = 0, Ball(a[i]) == a[i]
bool receives true

for i from 0 to n− 1 do
while bool do

if d(a[i],a[i +1]) ≤ r then
add a[i +1] to Ball(a[i], r)

else

r == d(a[i],a[i +1])
bool receives false

end if

end while
end for

Rips complex receives Ball
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Algorithm 9 Boundary matrix.

Input: Rips complex

Output: boundary matrix

for i from 0 to n− 1 do
for j from 0 to n− 1 do

if a[j] ==face of a[i] then
M[i, j] receives 1

else

M[i, j] receives 0
end if

end for

end for

Finally to pair birth and death of cycles as early mentioned, we

index columns by j , and i = �(j) denotes the line that contains the
lowest one in the column j , denoted Cj . A matrix is called reduced,

when no two different columns have their lower at the same level. To

get a reduced boundary matrix, we appeal this algorithm:

Algorithm 10 Boundary matrix.

Input: Boundary Matrix
Output: pairs (i, j)
for j = 0..m do

for j ′ < j do
while �(j ′) == �(j) do
C[j] = C[j] +C[j ′] mod(2)

end while
end for

draw (�(j), j)
end for

The fruit of this implementation is the following persistent diagrams
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Figure 4.20: Persistent diagram that represents the dendrite and
spines density under 5 cGy48Ti radiation.

Figure 4.21: Persistent diagram that represents the dendrite and
spines density under 30 cGy48Ti radiation.

Our persistent diagrams show clearly how much the 30 cGy48Ti
radiations damage deeply neuronal tissue more than the 5 cGy48Ti

radiations. This shows the power of the topology approach in the

data analysis. Indeed, the experiences led by the Limoli staff (as out-
lined here below) were unable to differentiate the negative effects on

the neuronal tissue after radiation 5 cGy48T and 30 cGy48T.
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Figure 4.22: Dendrite density under different radiations.

Figure 4.23: Spines density under different radiations.

5 Machine learning

Machine learning is an artificial intelligence technology that allows

computers to perform tasks without having been explicitly programmed.

For this purpose, they need data to analyse and train on. The aim in
Machine learning is to discover patterns and make predictions from

big data based on statistics, data mining, pattern recognition and
predictive analytic. For example, based on some bank transaction

information like the amount or the localization, and analysing the

account history data, machine learning is useful to detect potential
fraud in a millisecond. The Machine learning machinery consists

of extracting information from big data sources: The more data in-

jected into a machine learning system, the more this system can learn
to discover the hidden patterns in the data with more efficiency.

Deep Learning is a machine learning example of application in

visual recognition. For example, an algorithm will be programmed
to detect certain faces from images coming from a camera. Depend-

ing on the database assigned, it will be able to spot a wanted individ-

ual in a crowd, detect the satisfaction rate when leaving a store by de-
tecting smiles, etc. A set of algorithms will also be able to recognize

voice, tone, expression of questioning, affirmation, and words.

Deep Learning is based on the concept of artificial neural net-
works: inspired by neurons in the human brain, we are made up of

several artificial neurons connected to each other. The higher num-

ber of neurons is, the "deeper" network is. As signals travel between
neurons, the neural network assigns a certain weight to different
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neurons: A neuron that receives more load will exert more effect on
adjacent neurons. Let us take a concrete example of image recogni-

tion: the goal is to recognize photos that contain at least one cat. In
order to achieve this, the neural network has to compile a set of thou-

sands of photos of different cats, mixed with images of objects that

are not cats. These images are then converted into data and trans-
ferred over the network. The artificial neurons then assign a weight

to the different elements. The final layer of neurons will then bring

together the different information to deduce whether or not it is a
cat.

Hence, TDA and machine learning share a common point: using
and analysing big data. That was our key inspiration to attack, with

a TDA angle of view, the famous open problem in machine learning,

namely the "Bongard Problems". There is a set of 100 visual puzzles
posed by M. M. Bongard, where each puzzle consists of twelve im-

ages separated into two groups of six images. The task is to find the

unique rule separating the two classes in each given problem. The
problems were first posed as a challenge for the AI community to

test machines ability to imitate complex, context-depending think-
ing processes using only minimal information. Although some work

was done to solve these problems, none of the previous approaches

could automatically solve all of them. Our approach to attack these
problems was to combine the tools of persistent homology along-

side machine learning methods by implementing algorithms that are

able to solve some problems involving differences in connectivity
and size.

Bongard Problems [3] consist of twelve boxes, six of which follow
a certain rule while the other six break that rule. The task of the

problem solver is to identify the underlying pattern. The following

figure is an example of such a problem

Bongard Problems are not only a challenge for the AI community,

they can also be helpful for engineers as well as mathematicians to
understand andmodel brain functions such as learning, finding sim-

ilarity, creating abstract ideas and acting by intuition. A machine
that is able to solve Bongard Problems is indicative of the presence

of high-level cognitive functions that can be further used to solve

problems that go beyond the original posed problems such as re-
trieving similar images, finding a network of people with similar in-
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Fig. 4.24. Bongard Problem N°2.

terests, counting objects in images and videos or annotating images.

Few efforts have been made to automatically solve Bongard Prob-
lems. Some major attempts are "RF4" by Saito and Nakano[63] and

"Phaeaco" by Harry Foundalis [23]. They could solve in this way 10

of the 100 Bongard Problems.

We approached Bongard Problems from a different angle and
considered ones that have not been solved by any of the systems

mentioned earlier (see [6]). The topological tool, as far as we know,

has never been used to attack these problems. The central idea in our
work was to find the pattern setting apart the two classes of shapes in

each Bongard Problem. Homology groups formalize the description

of the topology of geometric objects, specifically, persistent homol-
ogy gives us a way to make that distinction by means of comparing

topological signatures.

For our purpose to resolve Bongard Problems, we assume that

images can be studied and compared through their topological sig-
natures. We also assume that given the right feature function along

with the right clustering parameters, it is possible to find a grouping

that matches perfectly the one in the original problem.

The algorithm takes as input the 12 images as well as their cor-

responding classes. The proposed algorithm consists of four main
steps. We first select a feature to compute from a pre-determined set

74



of features. We then perform image clustering based on that feature.
If the resulting clustering matches the original one, there is a high

chance that the feature used for the clustering is the rule of interest.
Otherwise, we select another feature and go through that same pro-

cess again. At the end, we can get one of two outcomes: either we

find the separating rule or the time is out. We can circumvent the
latter issue by both automatically extending the feature set and opti-

mizing the algorithm. We should note that this is out of the scope of

the present paper. The figure and algorithm below summarize our
approach entirely.

Fig. 4.25. Summarized Method.

For the first time, we used classical persistent homology to re-
solve Bongard Problem N° 23 by computing persistence diagrams of

the images, and then transforming them into persistence images and

then feeding them to the clustering algorithm before deciding if the
number of components is actually the separating rule.
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Algorithm 11 Abstract General Algorithm.

Input: 12 Bongard images with corresponding class
Output: The separating feature/rule

while not all feature functions are called do

feature← random feature call
cluster← images based on feature

match← compare original and resulting clusters

end while
if match is perfect then

feature
else

"solution not found"

end if

Figure 4.26: Bongard Problem N° 23.

Using the Ripser library, we compute the 0-dimensional lower

star filtration on each of the twelve images. We get the following
results:
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(a) Persistence Diagrams of left images

(b) Persistence Diagrams of right images

Figure 4.27: Computed Persistence Diagrams

Unfortunately, it is hard to directly use persistence diagrams for
machine learning tasks. Persistence images, on the other hand, are
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well suited for that purpose. These are actually finite -dimensional
vector representations of persistence diagrams. They too verify sta-

bility with respect to small perturbations. We get the following re-
sults using the Persim library.

(a) Persistence Images of left images

(b) Persistence Images of right images

Figure 4.28: Computed Persistence Images.

We clustered images using the DBSCAN algorithm on the basis
of the connex function output (see Algorithm 12). The most impor-

tant parameters to set are the minimum number of samples in each

cluster and the ε parameter that determines the maximum distance
between two samples to be considered as neighbours. In this case, the

78



ε parameter is set to 2. Since the twelve images should be separated
into two classes of six images each, we set the minimum number of

samples parameter to 6.

Algorithm 12 Sample feature functions.

Input: 12 Bongard images

Output: Persistent diagrams
Connex(image)

Convert image to grayscale image

Construct lower star image
Compute H0

Compute persistence diagram

Transform persistence diagram to persistence image
return persistence diagram

return persistence image

By computing the adjusted random index, we verify the match

between the resulting and the original groupings. A perfect match-
ing score indicates that the difference between the two sets of images

resides in the number of connected components. It is the separating

rule we are looking for.

The most important parameters to set are the minimum number

of samples in each cluster and the ε parameter that determines the
maximum distance between two samples to be considered as neigh-

bours. In this case, the ε parameter is set to 2. Since the twelve

images should be separated into two classes of six images each, we
set the minimum number of samples parameter to 6.

The precedent classical persistent homology does not fit for other

Bongard Problems. The above problems presents homeomorphic ob-

jects that cannot be separated using persistence diagrams in the clas-
sical form.
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(a) Bongard Problem N°2.

(b) Bongard Problem N°100.

(c) Bongard Problem N°97.

For example, a solver that relies on such an approach would not
make the difference between a triangle represented with straight lines

and one represented with curved lines as in the case of Bongard

Problem N°10. The Bongard Problems we are presenting next have
not been solved by either approach. In almost of these problems

instances, shapes in each group present similarities that cannot be
captured using literal concepts.

In this setting, the use of G-equivariant non expansive operators
presents itself as a better alternative to compare shapes and detect

the rule of interest. Indeed, as stated earlier, one way of getting
topological summaries of data is by building sublevel set filtrations

on top of that data and computing persistence diagrams. However,

persistent homology in the form we described cannot distinguish be-
tween summaries produced by a filtering function f and a filtering

function f ◦ g when g is a self homeomorphism. That being the case,

only a few Bongard Problems would benefit from the use of clas-
sical persistent homology when the invariance group is the group

of all self-homeomorphisms, which we’ll denote Homeo(X). Other
problems would better make use of invariance with respect to proper

subgroups of Homeo(X).

Our major source of inspiration in that regard was the Frosini et

al. works [11] and [9]. Our main effort was to explore the possibility

of using their results in the case of Bongard Problems, by being inter-
ested in the invariance with respect to previously chosen subgroups

G of Homeo(X) and then applying G-equivariant non-expansive op-
erators g(see Definition 4.2) on filtrations to get multiple measure-

ments associated with each filtration. These measurements can be

thought of as different ’lenses’ through which we see our data. We
then approximate the natural distance between measuring functions
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and construct a distance matrix which is then fed to the clustering
algorithm. The subgroup G of Homeo(X) transforms the set Φ of

filtering functions by a right group action

f : Φ ×G→ Φ

(ϕ,g) �→ ϕ ◦ g

Let Φ be a topological subspace of C0(X,R), the set of admissi-
ble filtering functions on X, and G a subgroup of Homeo(X).

F is a G-equivariant non-expansive operators if it verifies the
following properties:

• F is a function from Φ to Φ;

• F(ϕ ◦ g) = F(ϕ) ◦ g for every ϕ ∈ Φ and every g ∈ G;

• ‖F(ϕ1)− F(ϕ2)‖∞ ≤ ‖ϕ1 −ϕ2‖∞ For every ϕ1,ϕ2 ∈Φ.

Definition 4.2

As previously said, computing the bottleneck distance between

two persistence diagrams is not well suited for some problems in
shape comparison, hence the need to introduce a G-bottleneck dis-

tance as a more powerful approach in comparing two filtrations.

The G-bottleneck distance with respect to a group G is defined

by

dG(ϕ1,ϕ2) = inf
g∈G

max
x∈X

| ϕ1(x)−ϕ2(g(x)) |

Definition 4.3

Unfortunately, this distance presents a challenge; it is difficult to
compute. To address this issue, we introduced DFmatch as a tool to

approximate dG, which is also a G-invariant pseudo-metric on Φ
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Let F (Φ,G) be the set of all G-equivariant non expansive oper-

ators and F be a non empty subset of F (Φ,G)

DFmatch(ϕ1,ϕ2) = sup
F∈F

dmatch(rk(F(ϕ1)), rk (F(ϕ2))).

For every ϕ1, ϕ2 ∈ Φ. dmatch corresponds to the bottleneck dis-

tance and rk denotes the k-th persistent Betti number function
with respect to the function ϕ.

Definition 4.4

The algorithm below describes our method.

Algorithm 13 G-Equivariance method.

Input: 12 Bongard images

Output: Distance Matrix
Equivariance(image)

operators← list of operators

for img in images do
lower_star_image← compute lower star filtration of img

apply list of operators on lower_star_image

for all pairs of lower_star_image with the same applied operator
do

Approximate the natural pseudo distance
end for

end for

Compute distance matrix
return Distance Matrix

The problems at hand are of geometric and topological nature.

In this context, capturing geometric features and topological shape
invariants makes sense. These invariants serve as candidates for the

separating rule we are looking for. Once we compute the selected

features, we transform them into a suitable format. We then feed
them as input to a clustering algorithm (Algorithm 13) to separate

the given data into regions of high density and others of low density.
Once we have a known clustering solution, we have a ground truth

clustering against which we can evaluate our results. If the result-

ing and original clustering match, the features responsible for that
outcome are traced back and given as output.
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For such cases, persistent homology and G-equivariant operators
present powerful tools mainly for two reasons: firstly, because persis-

tent homology can separate relevant features from noise and is more
concerned with the general shape of data, and secondly, because GE-

NEOs present the algorithm with multiple functions through which

to see the data, thus giving it more ability to recognize the possible
pattern governing the sets of images.

Letting G be the group of all similarity transformations, we can

contsruct G-equivariant non expansive operators which serve as tools
to identify images with similar patterns and arrange Bongard images

into clusters that match the original ones.

The algorithm we proposed in this paper works in the same fash-

ion. The algorithm constructs different representations of the same

images, through the use of persistent homology summaries and G-
equivariant non-expansive operators, allowing it to view the images

using different ’lenses’, the choice of the property that might explain

the separation of the two sets is made at random. Performing cluster-
ing based on the chosen property and matching it with the original

grouping allows the algorithm to decide if the separating rule was
found.

6 Linguistics

If writing and talking are both tools for transmitting messages, writ-

ing has the advantage of being a reliable form of data storage that
obeys the usual coding and decoding rules, which imply a shared

understanding by the author and the reader of the sets of characters

contained in the used writing system. Writing systems are a con-
ventional visual mode to represent their oral communication. All

writing systems require:

• symbols, individually called signs and collectively called writ-
ing;

• at least one set of rules and conventions (spelling) understood

and shared by a community, which gives meaning to the basic

elements (graphemes), their arrangement and their reciprocal
relations;
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• at least one language (generally spoken) whose constructions
are represented and can be memorized by the interpretation of

these elements and rules;

Fig. 4.30. Various written systems around the world.

We were interested in this folkloric linguistic research question: how

to verify whether two writing systems are related. In fact, to demon-
strate linguistic relatedness and to reconstruct a hypothetical com-

mon ancestral system of languages, linguists rely, among others, on
the comparative method as a technique to study language develop-

ment and perform comparisons on these languages (see [51]). How-

ever, the languages to compare are not chosen at random, and an
initial stage of deciding whether some languages are related is re-

quired.

Tifinagh, which is the writing system we focused on in our work,

is the script adopted for Tamazight or Berber languages more broadly.
Berber have been originally spoken in territories ranging from the
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Atlantic coast to Egypt before the arabization of North Africa. Mil-
lions of Tifinagh inscriptions of various styles and eras tattoo the

rocks of North Africa and the Sahara. It is at the end of a long pro-
cess of cultural and identity changes that begun with the emergence

of Islam in the seventh century, that the Maghreb will be born. Con-

currently, the linguistic map of Tifinagh (see FIGURE 6) retracts over
the centuries until its present form, broken into islands distant from

each other.

Figure 4.31: Current Tifinagh speaking map in Africa.

There is no conclusive theory so far about the origin of the Ti-
finagh script. The origins proposed (see [59]) range from Norway,

Greece, to the south of France and the Indus Valley. Suggested ances-
tors are, among others, the Ugaritic cuneiform scripts or the Runic

inscriptions. As for its emergence dates, they range from 30,000-

16,000 years BC to 429 AD. Recent research has refuted most of
these hypotheses, but the question of the origin of the Tifinagh script

has no definitive answer yet. Most scholars seem to gather mainly

around three possibilities:

• South-Semitic origin (Arabian and/or Latin scripts);

• North-Semitic origin (Phoenician and/or Punic);

• Independent invention with Phoenician influence.

We focused on this specific question: are the Tifinagh and Phoenician

scripts related? Our approach may be extended to study the related-
ness of any two other languages, and as such, serve as a first step
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to the comparative method, at least to the extent where only letter
shapes are considered.

Figure 4.32: Left: Tifinagh scripts. Right: Phoenician scripts

To verify the relatedness of the two scripts, we adopt a topologi-

cal data analysis approach based on persistent homology and graph
theory. The letters of the writing systems we are studying are viewed

as a graph. The topological information of interest in each of these
graphs is summarised in persistence barcodes. Computing the Bot-

tleneck distance between these topological signatures will serve as a

means to verify similarity between Tifinagh and Phoenician scripts.

We define two scripts to be related, when we can get from one

letter in one script to another one in the other script by a finite series

of transformations. In order to model these transformations, we first
represent each letter as a graph, or more specifically as a dynamical

graph, by allowing operations such as adding or removing vertices

and edges.

We will denote the set of Phoenician letters by P and that of Ti-

finagh letters by T. We summarize our approach in the following

steps:

• Represent each letter in P as a time-varying graph G;

• Associate a metric space representation to each graph G and
build a dynamical simplicial complex.
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• Compute the zigzag persistent homology of G;

We get the following:

Figure 4.33: Tifinagh scripts TDA.

Figure 4.34: Phoenician scripts TDA.
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Once this is done, the next step consists of making a clustering
of P and T graphs on the basis of the pairwise bottleneck distances

between their topological signatures in order to detect similarity be-
tween letters. Indeed, after computing the persistence diagrams as-

sociated to the simplicial complexes built on top of each graph, we

compute the pairwise bottleneck distance between persistence dia-
grams. We obtain a distance matrix on the basis of which we perform

hierarchical clustering, more specifically in this case an agglomera-

tive clustering. Agglomerative clustering starts by considering each
singleton as a cluster. The clusters are then inductively combined

until some stop criterion is satisfied. In this work, the update at each
step is performed using a complete linkage which measures inter-

cluster dissimilarity based on the maximum distances between all

data points.

We get the following:

Figure 4.35: Tifinagh vs Phoenocian scripts: Cluster repartition.

We see that, except for a few distinct points, each cluster in the
right figure contains both Phoenician and Tifinagh letters suggesting

similarity between the two. In this work, we demonstrated how TDA
and persistent homology in particular can be used to verify the relat-

edness between two writing systems. Even though we restricted our

analysis to the study of similarity between the Phoenician and Tifi-
nagh scripts, the method we used can be extended to compare any
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two writing systems. A future work might explore the nature of this
relatedness i.e whether one script is derived from the other or one

was built under the other’s influence.
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Chapter 5

Applied Category Theory

1 Glossary

In 2019, we switched to another exciting research area in applied

algebraic topology, namely the Applied Category Theory (ACT for

short) which is a relatively new branch ofmathematics that has trans-
formed much of pure math research. The technical advance is that

category theory provides a framework in which to organize formal
systems and by which to translate between them, allowing one to

transfer knowledge from one field to another. But this same organi-

zational framework also has many compelling examples outside of
pure math. In fact, one of the great features of category theory is that

its organizing principles have been used to reshape and reformulate

problems within pure mathematics, including topology, homotopy
theory and algebraic geometry. Category theory has shed light on

those problems, making them easier to solve and opening doors for
new avenues of research. Historically, category theory has found im-

mense application within mathematics. We suggest to the reader,

interested in learning more about ACT, the good and well written
Spivak notes [22].
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2 Dynamical systems (OngoingWorks)

Operads were introduced by May to describe compositional struc-

tures arising in algebraic topology [48]; Leinster has written a great
book on the subject [46]. More recently, Spivak and his collaborators

has discussed how to apply operads to model composition of struc-

tures in logic, databases, and dynamical systems (see [57], [67] and
[68]). Actually we are working on some application in dynamical sys-

tems. We are especially interested in four open questions inspired by

[44], [67] and:

1. The first is to investigate the mathematical properties of the
wiring diagrams operad S (or T ) and its algebras;

2. The second is to use the wiring diagrams operad and its alge-

bras to study real-world phenomena;

3. The third is to change and expand the model, i.e. the operad S

itself;

4. The fourth is to consider the category 2-cob of 1-dimensional
oriented manifolds, and oriented cobordisms between them.

2-Cob is a symmetric monoidal category. You focus to try to

prove the following: for every lax monoidal functor 2-Cob −→
Set, there is an associated traced monoidal category, where ev-

ery object has been equipped with a commutative Frobenius
structure.
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